阅读这篇文章之前,建议先阅读和这篇文章关联的内容。
以下内容可以在[跟着Mic学架构]公众号上看到!
1. 详细剖析分布式微服务架构下网络通信的底层实现原理(图解)
2. (年薪60W的技巧)工作了5年,你真的理解Netty以及为什么要用吗?(深度干货)
3. 深度解析Netty中的核心组件(图解+实例)
4. BAT面试必问细节:关于Netty中的ByteBuf详解
5. 通过大量实战案例分解Netty中是如何解决拆包黏包问题的?
6. 基于Netty实现自定义消息通信协议(协议设计及解析应用实战)
7. 全网最详细最齐全的序列化技术及深度解析与应用实战
8. 手把手教你基于Netty实现一个基础的RPC框架(通俗易懂)
9. (年薪60W分水岭)基于Netty手写实现RPC框架进阶篇(带注册中心和注解)
提前准备好如下代码, 从服务端构建着手,深入分析Netty服务端的启动过程。
public class NettyBasicServerExample { public void bind(int port){ //netty的服务端编程要从EventLoopGroup开始, // 我们要创建两个EventLoopGroup, // 一个是boss专门用来接收连接,可以理解为处理accept事件, // 另一个是worker,可以关注除了accept之外的其它事件,处理子任务。 //上面注意,boss线程一般设置一个线程,设置多个也只会用到一个,而且多个目前没有应用场景, // worker线程通常要根据服务器调优,如果不写默认就是cpu的两倍。 EventLoopGroup bossGroup=new NioEventLoopGroup(); EventLoopGroup workerGroup=new NioEventLoopGroup(); try { //服务端要启动,需要创建ServerBootStrap, // 在这里面netty把nio的模板式的代码都给封装好了 ServerBootstrap bootstrap = new ServerBootstrap(); bootstrap.group(bossGroup, workerGroup) //配置Server的通道,相当于NIO中的ServerSocketChannel .channel(NioServerSocketChannel.class) .handler(new LoggingHandler(LogLevel.INFO)) //设置ServerSocketChannel对应的Handler //childHandler表示给worker那些线程配置了一个处理器, // 这个就是上面NIO中说的,把处理业务的具体逻辑抽象出来,放到Handler里面 .childHandler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel socketChannel) throws Exception { socketChannel.pipeline() .addLast(new NormalInBoundHandler(“NormalInBoundA”,false)) .addLast(new NormalInBoundHandler(“NormalInBoundB”,false)) .addLast(new NormalInBoundHandler(“NormalInBoundC”,true)); socketChannel.pipeline() .addLast(new NormalOutBoundHandler(“NormalOutBoundA”)) .addLast(new NormalOutBoundHandler(“NormalOutBoundB”)) .addLast(new NormalOutBoundHandler(“NormalOutBoundC”)) .addLast(new ExceptionHandler()); } }); //绑定端口并同步等待客户端连接 ChannelFuture channelFuture=bootstrap.bind(port).sync(); System.out.println(“Netty Server Started,Listening on :”+port); //等待服务端监听端口关闭 channelFuture.channel().closeFuture().sync(); } catch (InterruptedException e) { e.printStackTrace(); } finally { //释放线程资源 bossGroup.shutdownGracefully(); workerGroup.shutdownGracefully(); } } public static void main(String[] args) { new NettyBasicServerExample().bind(8080); } } public class NormalInBoundHandler extends ChannelInboundHandlerAdapter { private final String name; private final boolean flush; public NormalInBoundHandler(String name, boolean flush) { this.name = name; this.flush = flush; } @Override public void channelRead(ChannelHandlerContext ctx, Object msg) throws Exception { System.out.println(“InboundHandler:”+name); if(flush){ ctx.channel().writeAndFlush(msg); }else { throw new RuntimeException(“InBoundHandler:”+name); } } @Override public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception { System.out.println(“InboundHandlerException:”+name); super.exceptionCaught(ctx, cause); } } public class NormalOutBoundHandler extends ChannelOutboundHandlerAdapter { private final String name; public NormalOutBoundHandler(String name) { this.name = name; } @Override public void write(ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception { System.out.println(“OutBoundHandler:”+name); super.write(ctx, msg, promise); } }在服务端启动之前,需要配置ServerBootstrap的相关参数,这一步大概分为以下几个步骤
配置EventLoopGroup线程组配置Channel类型设置ServerSocketChannel对应的Handler设置网络监听的端口设置SocketChannel对应的Handler配置Channel参数Netty会把我们配置的这些信息组装,发布服务监听。
ServerBootstrap参数配置过程
下面这段代码是我们配置ServerBootStrap相关参数,这个过程比较简单,就是把配置的参数值保存到ServerBootstrap定义的成员变量中就可以了。
bootstrap.group(bossGroup, workerGroup) //配置Server的通道,相当于NIO中的ServerSocketChannel .channel(NioServerSocketChannel.class) .handler(new LoggingHandler(LogLevel.INFO)) //设置ServerSocketChannel对应的Handler //childHandler表示给worker那些线程配置了一个处理器, // 这个就是上面NIO中说的,把处理业务的具体逻辑抽象出来,放到Handler里面 .childHandler(new ChannelInitializer<SocketChannel>() { });我们来看一下ServerBootstrap的类关系图以及属性定义
ServerBootstrap类关系图
如图8-1所示,表示ServerBootstrap的类关系图。
AbstractBootstrap,定义了一个抽象类,作为抽象类,一定是抽离了Bootstrap相关的抽象逻辑,所以很显然可以推断出Bootstrap应该也继承了AbstractBootstrapServerBootstrap,服务端的启动类,ServerBootstrapAcceptor,继承了ChannelInboundHandlerAdapter,所以本身就是一个Handler,当服务端启动后,客户端连接上来时,会先进入到ServerBootstrapAccepter。图8-1 ServerBootstrap类关系图
AbstractBootstrap属性定义
public abstract class AbstractBootstrap<B extends AbstractBootstrap<B, C>, C extends Channel> implements Cloneable { @SuppressWarnings(“unchecked”) private static final Map.Entry<ChannelOption<?>, Object>[] EMPTY_OPTION_ARRAY = new Map.Entry[0]; @SuppressWarnings(“unchecked”) private static final Map.Entry<AttributeKey<?>, Object>[] EMPTY_ATTRIBUTE_ARRAY = new Map.Entry[0]; /** * 这里的EventLoopGroup 作为服务端 Acceptor 线程,负责处理客户端的请求接入 * 作为客户端 Connector 线程,负责注册监听连接操作位,用于判断异步连接结果。 */ volatile EventLoopGroup group; // @SuppressWarnings(“deprecation”) private volatile ChannelFactory<? extends C> channelFactory; //channel工厂,很明显应该是用来制造对应Channel的 private volatile SocketAddress localAddress; //SocketAddress用来绑定一个服务端地址 // The order in which ChannelOptions are applied is important they may depend on each other for validation // purposes. /** * ChannelOption 可以添加Channer 添加一些配置信息 */ private final Map<ChannelOption<?>, Object> options = new LinkedHashMap<ChannelOption<?>, Object>(); private final Map<AttributeKey<?>, Object> attrs = new ConcurrentHashMap<AttributeKey<?>, Object>(); /** * ChannelHandler 是具体怎么处理Channer 的IO事件。 */ private volatile ChannelHandler handler; }对于上述属性定义,整体总结如下:
提供了一个ChannelFactory对象用来创建Channel,一个Channel会对应一个EventLoop用于IO的事件处理,在一个Channel的整个生命周期中 只会绑定一个EventLoop,这里可理解给Channel分配一个线程进行IO事件处理,结束后回收该线程。AbstractBootstrap没有提供EventLoop而是提供了一个EventLoopGroup,其实我认为这里只用一个EventLoop就行了。不管是服务器还是客户端的Channel都需要绑定一个本地端口这就有了SocketAddress类的对象localAddress。Channel有很多选项所有有了options对象LinkedHashMap, Object>怎么处理Channel的IO事件呢,我们添加一个事件处理器ChannelHandler对象。ServerBootstrap属性定义
ServerBootstrap可以理解为服务器启动的工厂类,我们可以通过它来完成服务器端的 Netty 初始化。主要职责:|
EventLoop初始化channel的注册pipeline的初始化handler的添加过程服务端连接处理。public class ServerBootstrap extends AbstractBootstrap<ServerBootstrap, ServerChannel> { private static final InternalLogger logger = InternalLoggerFactory.getInstance(ServerBootstrap.class); // The order in which child ChannelOptions are applied is important they may depend on each other for validation // purposes. //SocketChannel相关的属性配置 private final Map<ChannelOption<?>, Object> childOptions = new LinkedHashMap<ChannelOption<?>, Object>(); private final Map<AttributeKey<?>, Object> childAttrs = new ConcurrentHashMap<AttributeKey<?>, Object>(); private final ServerBootstrapConfig config = new ServerBootstrapConfig(this); //配置类 private volatile EventLoopGroup childGroup; //工作线程组 private volatile ChannelHandler childHandler; //负责SocketChannel的IO处理相关的Handler public ServerBootstrap() { } }服务端启动过程分析
了解了ServerBootstrap相关属性的配置之后,我们继续来看服务的启动过程,在开始往下分析的时候,先不妨来思考以下这些问题
Netty自己实现的Channel与底层JDK提供的Channel是如何联系并且构建实现的ChannelInitializer这个特殊的Handler处理器的作用以及实现原理Pipeline是如何初始化以的ServerBootstrap.bind
先来看ServerBootstrap.bind()方法的定义,这里主要用来绑定一个端口并且发布服务端监听。
根据我们使用NIO相关API的理解,无非就是使用JDK底层的API来打开一个服务端监听并绑定一个端口。
ChannelFuture channelFuture=bootstrap.bind(port).sync(); public ChannelFuture bind(SocketAddress localAddress) { validate(); return doBind(ObjectUtil.checkNotNull(localAddress, “localAddress”)); } validate(), 验证ServerBootstrap核心成员属性的配置是否正确,比如group、channelFactory、childHandler、childGroup等,这些属性如果没配置,那么服务端启动会报错localAddress,绑定一个本地端口地址doBind
doBind方法比较长,从大的代码结构,可以分为三个部分
initAndRegister 初始化并注册Channel,并返回一个ChannelFuture,说明初始化注册Channel是异步实现regFuture.cause() 用来判断initAndRegister()是否发生异常,如果发生异常,则直接返回regFuture.isDone(), 判断initAndRegister()方法是否执行完成。 如果执行完成,则调用doBind0()方法。 如果未执行完成,regFuture添加一个监听回调,在监听回调中再次判断执行结果进行相关处理。 PendingRegistrationPromise 用来保存异步执行结果的状态从整体代码逻辑来看,逻辑结构还是非常清晰的, initAndRegister()方法负责Channel的初始化和注册、doBind0()方法用来绑定端口。这个无非就是我们使用NIO相关API发布服务所做的事情。
private ChannelFuture doBind(final SocketAddress localAddress) { final ChannelFuture regFuture = initAndRegister(); final Channel channel = regFuture.channel(); if (regFuture.cause() != null) { return regFuture; } if (regFuture.isDone()) { // At this point we know that the registration was complete and successful. ChannelPromise promise = channel.newPromise(); doBind0(regFuture, channel, localAddress, promise); return promise; } else { // Registration future is almost always fulfilled already, but just in case its not. final PendingRegistrationPromise promise = new PendingRegistrationPromise(channel); regFuture.addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { Throwable cause = future.cause(); if (cause != null) { // Registration on the EventLoop failed so fail the ChannelPromise directly to not cause an // IllegalStateException once we try to access the EventLoop of the Channel. promise.setFailure(cause); } else { // Registration was successful, so set the correct executor to use. // See https://github.com/netty/netty/issues/2586 promise.registered(); doBind0(regFuture, channel, localAddress, promise); } } }); return promise; } }initAndRegister
这个方法顾名思义,就是初始化和注册,基于我们整个流程的分析可以猜测到
初始化,应该就是构建服务端的Handler处理链register,应该就是把当前服务端的连接注册到selector上下面我们通过源码印证我们的猜想。
final ChannelFuture initAndRegister() { Channel channel = null; try { //通过ChannelFactory创建一个具体的Channel实现 channel = channelFactory.newChannel(); init(channel); //初始化 } catch (Throwable t) { //省略…. } //这个代码应该和我们猜想是一致的,就是将当前初始化的channel注册到selector上,这个过程同样也是异步的 ChannelFuture regFuture = config().group().register(channel); if (regFuture.cause() != null) { //获取regFuture的执行结果 if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } return regFuture; }channelFactory.newChannel()
这个方法在分析之前,我们可以继续推测它的逻辑。
在最开始构建服务端的代码中,我们通过channel设置了一个
NioServerSocketChannel.class类对象,这个对象表示当前channel的构建使用哪种具体的API bootstrap.group(bossGroup, workerGroup) //配置Server的通道,相当于NIO中的ServerSocketChannel .channel(NioServerSocketChannel.class)而在initAndRegister方法中,又用到了channelFactory.newChannel()来生成一个具体的Channel实例,因此不难想到,这两者必然有一定的联系,我们也可以武断的认为,这个工厂会根据我们配置的channel来动态构建一个指定的channel实例。
channelFactory有多个实现类,所以我们可以从配置方法中找到channelFactory的具体定义,代码如下。
public B channel(Class<? extends C> channelClass) { return channelFactory(new ReflectiveChannelFactory<C>( ObjectUtil.checkNotNull(channelClass, “channelClass”) )); }channelFactory对应的具体实现是:ReflectiveChannelFactory,因此我们定位到newChannel()方法的实现。
ReflectiveChannelFactory.newChannel
在该方法中,使用constructor构建了一个实例。
@Override public T newChannel() { try { return constructor.newInstance(); } catch (Throwable t) { throw new ChannelException(“Unable to create Channel from class “ + constructor.getDeclaringClass(), t); } }construtor的初始化代码如下, 用到了传递进来的clazz类,获得该类的构造器,该构造器后续可以通过newInstance创建一个实例对象
而此时的clazz其实就是:NioServerSocketChannel
public class ReflectiveChannelFactory<T extends Channel> implements ChannelFactory<T> { private final Constructor<? extends T> constructor; public ReflectiveChannelFactory(Class<? extends T> clazz) { ObjectUtil.checkNotNull(clazz, “clazz”); try { this.constructor = clazz.getConstructor(); } catch (NoSuchMethodException e) { throw new IllegalArgumentException(“Class “ + StringUtil.simpleClassName(clazz) + ” does not have a public non-arg constructor”, e); } } }NioServerSocketChannel
NioServerSocketChannel的构造方法定义如下。
public class NioServerSocketChannel extends AbstractNioMessageChannel implements io.netty.channel.socket.ServerSocketChannel { private static ServerSocketChannel newSocket(SelectorProvider provider) { try { return provider.openServerSocketChannel(); } catch (IOException e) { throw new ChannelException( “Failed to open a server socket.”, e); } } public NioServerSocketChannel() { this(newSocket(DEFAULT_SELECTOR_PROVIDER)); } }当NioServerSocketChannel实例化后,调用newSocket方法创建了一个服务端实例。
newSocket方法中调用了
provider.openServerSocketChannel(),来完成ServerSocketChannel的创建,ServerSocketChannel就是Java中NIO中的服务端API。 public ServerSocketChannel openServerSocketChannel() throws IOException { return new ServerSocketChannelImpl(this); }通过层层推演,最终看到了Netty是如何一步步封装,完成ServerSocketChannel的创建。
设置非阻塞
在NioServerSocketChannel中的构造方法中,先通过super调用父类做一些配置操作
public NioServerSocketChannel(ServerSocketChannel channel) { super(null, channel, SelectionKey.OP_ACCEPT); config = new NioServerSocketChannelConfig(this, javaChannel().socket()); }最终,super会调用AbstractNioChannel中的构造方法,
protected AbstractNioChannel(Channel parent, SelectableChannel ch, int readInterestOp) { super(parent); this.ch = ch; this.readInterestOp = readInterestOp; //设置关心事件,此时是一个连接事件,所以是OP_ACCEPT try { ch.configureBlocking(false); //设置非阻塞 } catch (IOException e) { try { ch.close(); } catch (IOException e2) { logger.warn( “Failed to close a partially initialized socket.”, e2); } throw new ChannelException(“Failed to enter non-blocking mode.”, e); } }继续分析initAndRegister
分析完成channel的初始化后,接下来就是要将当前channel注册到Selector上,所以继续回到initAndRegister方法。
final ChannelFuture initAndRegister() { //省略…. //这个代码应该和我们猜想是一致的,就是将当前初始化的channel注册到selector上,这个过程同样也是异步的 ChannelFuture regFuture = config().group().register(channel); if (regFuture.cause() != null) { //获取regFuture的执行结果 if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } return regFuture; }注册到某个Selector上,其实就是注册到某个EventLoopGroup中,如果大家能有这个猜想,说明前面的内容是听懂了的。
config().group().register(channel)这段代码,其实就是获取在ServerBootstrap中配置的bossEventLoopGroup,然后把当前的服务端channel注册到该group中。
此时,我们通过快捷键想去看一下register的实现时,发现EventLoopGroup又有多个实现,我们来看一下类关系图如图8-2所示。
图8-3 EventLoopGroup类关系图
而我们在前面配置的EventLoopGroup的实现类是NioEventLoopGroup,而NioEventLoopGroup继承自MultithreadEventLoopGroup,所以在register()方法中,我们直接找到父类的实现方法即可。
MultithreadEventLoopGroup.register
这段代码大家都熟了,从NioEventLoopGroup中选择一个NioEventLoop,将当前channel注册上去
@Override public ChannelFuture register(Channel channel) { return next().register(channel); }next()方法返回的是NioEventLoop,而NioEventLoop又有多个实现类,我们来看图8-4所示的类关系图。
图8-4 NioEventLoop类关系图
从类关系图中发现,发现NioEventLoop派生自SingleThreadEventLoop,所以next().register(channel);方法,执行的是SingleThreadEventLoop中的register
SingleThreadEventLoop.register
@Override public ChannelFuture register(Channel channel) { return register(new DefaultChannelPromise(channel, this)); } @Override public ChannelFuture register(final ChannelPromise promise) { ObjectUtil.checkNotNull(promise, “promise”); promise.channel().unsafe().register(this, promise); return promise; }ChannelPromise, 派生自Future,用来实现异步任务处理回调功能。简单来说就是把注册的动作异步化,当异步执行结束后会把执行结果回填到ChannelPromise中
AbstractChannel.register
抽象类一般就是公共逻辑的处理,而这里的处理主要就是针对一些参数的判断,判断完了之后再调用register0()方法。
@Override public final void register(EventLoop eventLoop, final ChannelPromise promise) { ObjectUtil.checkNotNull(eventLoop, “eventLoop”); if (isRegistered()) { //判断是否已经注册过 promise.setFailure(new IllegalStateException(“registered to an event loop already”)); return; } if (!isCompatible(eventLoop)) { //判断eventLoop类型是否是EventLoop对象类型,如果不是则抛出异常 promise.setFailure( new IllegalStateException(“incompatible event loop type: “ + eventLoop.getClass().getName())); return; } AbstractChannel.this.eventLoop = eventLoop; //Reactor内部线程调用,也就是说当前register方法是EventLoop线程触发的,则执行下面流程 if (eventLoop.inEventLoop()) { register0(promise); } else { //如果是外部线程 try { eventLoop.execute(new Runnable() { @Override public void run() { register0(promise); } }); } catch (Throwable t) { logger.warn( “Force-closing a channel whose registration task was not accepted by an event loop: {}”, AbstractChannel.this, t); closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); } } }AbstractChannel.register0
Netty从EventLoopGroup线程组中选择一个EventLoop和当前的Channel绑定,之后该Channel生命周期中的所有I/O事件都由这个EventLoop负责。
register0方法主要做四件事:
调用JDK层面的API对当前Channel进行注册触发HandlerAdded事件触发channelRegistered事件Channel状态为活跃时,触发channelActive事件在当前的ServerSocketChannel连接注册的逻辑中,我们只需要关注下面的doRegister方法即可。
private void register0(ChannelPromise promise) { try { // check if the channel is still open as it could be closed in the mean time when the register // call was outside of the eventLoop if (!promise.setUncancellable() || !ensureOpen(promise)) { return; } boolean firstRegistration = neverRegistered; doRegister(); //调用JDK层面的register()方法进行注册 neverRegistered = false; registered = true; // Ensure we call handlerAdded(…) before we actually notify the promise. This is needed as the // user may already fire events through the pipeline in the ChannelFutureListener. pipeline.invokeHandlerAddedIfNeeded(); //触发Handler,如果有必要的情况下 safeSetSuccess(promise); pipeline.fireChannelRegistered(); // Only fire a channelActive if the channel has never been registered. This prevents firing // multiple channel actives if the channel is deregistered and re-registered. if (isActive()) { //此时是ServerSocketChannel的注册,所以连接还处于非活跃状态 if (firstRegistration) { pipeline.fireChannelActive(); } else if (config().isAutoRead()) { // This channel was registered before and autoRead() is set. This means we need to begin read // again so that we process inbound data. // // See https://github.com/netty/netty/issues/4805 beginRead(); } } } catch (Throwable t) { // Close the channel directly to avoid FD leak. closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); } }AbstractNioChannel.doRegister
进入到
AbstractNioChannel.doRegister方法。javaChannel().register()负责调用JDK层面的方法,把channel注册到eventLoop().unwrappedSelector()上,其中第三个参数传入的是Netty自己实现的Channel对象,也就是把该对象绑定到attachment中。
这样做的目的是,后续每次调Selector对象进行事件轮询时,当触发事件时,Netty都可以获取自己的Channe对象。
@Override protected void doRegister() throws Exception { boolean selected = false; for (;;) { try { selectionKey = javaChannel().register(eventLoop().unwrappedSelector(), 0, this); return; } catch (CancelledKeyException e) { if (!selected) { // Force the Selector to select now as the “canceled” SelectionKey may still be // cached and not removed because no Select.select(..) operation was called yet. eventLoop().selectNow(); selected = true; } else { // We forced a select operation on the selector before but the SelectionKey is still cached // for whatever reason. JDK bug ? throw e; } } } }服务注册总结
上述代码比较绕,但是整体总结下来并不难理解
初始化指定的Channel实例把该Channel分配给某一个EventLoop然后把Channel注册到该EventLoop的Selector中AbstractBootstrap.doBind0
分析完了注册的逻辑后,再回到AbstractBootstrap类中的doBind0方法,这个方法不用看也能知道,ServerSocketChannel初始化了之后,接下来要做的就是绑定一个ip和端口地址。
private static void doBind0( final ChannelFuture regFuture, final Channel channel, final SocketAddress localAddress, final ChannelPromise promise) { //获取当前channel中的eventLoop实例,执行一个异步任务。 //需要注意,以前我们在课程中讲过,eventLoop在轮询中一方面要执行select遍历,另一方面要执行阻塞队列中的任务,而这里就是把任务添加到队列中异步执行。 channel.eventLoop().execute(new Runnable() { @Override public void run() { //如果ServerSocketChannel注册成功,则调用该channel的bind方法 if (regFuture.isSuccess()) { channel.bind(localAddress, promise).addListener(ChannelFutureListener.CLOSE_ON_FAILURE); } else { promise.setFailure(regFuture.cause()); } } }); }channel.bind方法,会根据ServerSocketChannel中的handler链配置,逐个进行调用,由于在本次案例中,我们给ServerSocketChannel配置了一个 LoggingHandler的处理器,所以bind方法会先调用LoggingHandler,然后再调用DefaultChannelPipeline中的bind方法,调用链路
-> DefaultChannelPipeline.ind
-> AbstractChannel.bind
-> NioServerSocketChannel.doBind
最终就是调用前面初始化好的ServerSocketChannel中的bind方法绑定本地地址和端口。
protected void doBind(SocketAddress localAddress) throws Exception { if (PlatformDependent.javaVersion() >= 7) { javaChannel().bind(localAddress, config.getBacklog()); } else { javaChannel().socket().bind(localAddress, config.getBacklog()); } }构建SocketChannel的Pipeline
在ServerBootstrap的配置中,我们针对SocketChannel,配置了入站和出站的Handler,也就是当某个SocketChannel的IO事件就绪时,就会按照我们配置的处理器链表进行逐一处理,那么这个链表是什么时候构建的,又是什么样的结构呢?下面我们来分析这部分的内容
.childHandler(new ChannelInitializer<SocketChannel>() { @Override protected void initChannel(SocketChannel socketChannel) throws Exception { socketChannel.pipeline() .addLast(new NormalInBoundHandler(“NormalInBoundA”,false)) .addLast(new NormalInBoundHandler(“NormalInBoundB”,false)) .addLast(new NormalInBoundHandler(“NormalInBoundC”,true)); socketChannel.pipeline() .addLast(new NormalOutBoundHandler(“NormalOutBoundA”)) .addLast(new NormalOutBoundHandler(“NormalOutBoundB”)) .addLast(new NormalOutBoundHandler(“NormalOutBoundC”)) .addLast(new ExceptionHandler()); } });childHandler的构建
childHandler的构建过程,在AbstractChannel.register0方法中实现
final ChannelFuture initAndRegister() { Channel channel = null; try { channel = channelFactory.newChannel(); //这是是创建channel init(channel); //这里是初始化 } catch (Throwable t) { //省略…. } ChannelFuture regFuture = config().group().register(channel); //这是是注册 if (regFuture.cause() != null) { if (channel.isRegistered()) { channel.close(); } else { channel.unsafe().closeForcibly(); } } return regFuture; }ServerBootstrap.init
init方法,调用的是ServerBootstrap中的init(),代码如下。
@Override void init(Channel channel) { setChannelOptions(channel, newOptionsArray(), logger); setAttributes(channel, newAttributesArray()); ChannelPipeline p = channel.pipeline(); final EventLoopGroup currentChildGroup = childGroup; final ChannelHandler currentChildHandler = childHandler; //childHandler就是在服务端配置时添加的ChannelInitializer final Entry<ChannelOption<?>, Object>[] currentChildOptions = newOptionsArray(childOptions); final Entry<AttributeKey<?>, Object>[] currentChildAttrs = newAttributesArray(childAttrs); // 此时的Channel是NioServerSocketChannel,这里是为NioServerSocketChannel添加处理器链。 p.addLast(new ChannelInitializer<Channel>() { @Override public void initChannel(final Channel ch) { final ChannelPipeline pipeline = ch.pipeline(); ChannelHandler handler = config.handler(); //如果在ServerBootstrap构建时,通过.handler添加了处理器,则会把相关处理器添加到NioServerSocketChannel中的pipeline中。 if (handler != null) { pipeline.addLast(handler); } ch.eventLoop().execute(new Runnable() { //异步天剑一个ServerBootstrapAcceptor处理器,从名字来看, @Override public void run() { pipeline.addLast(new ServerBootstrapAcceptor( //currentChildHandler,表示SocketChannel的pipeline,当收到客户端连接时,就会把该handler添加到当前SocketChannel的pipeline中 ch, currentChildGroup, currentChildHandler, currentChildOptions, currentChildAttrs)); } }); } }); }其中,对于上述代码的核心部分说明如下
ChannelPipeline 是在AbstractChannel中的构造方法中初始化的一个DefaultChannelPipeline protected AbstractChannel(Channel parent) { this.parent = parent; id = newId(); unsafe = newUnsafe(); pipeline = newChannelPipeline(); }p.addLast是为NioServerSocketChannel添加handler处理器链,这里添加了一个ChannelInitializer回调函数,该回调是异步触发的,在回调方法中做了两件事 如果ServerBootstrap.handler添加了处理器,则会把相关处理器添加到该pipeline中,在本次演示的案例中,我们添加了LoggerHandler 异步执行添加了ServerBootstrapAcceptor,从名字来看,它是专门用来接收新的连接处理的。我们在这里思考一个问题,为什么NioServerSocketChannel需要通过ChannelInitializer回调处理器呢? ServerBootstrapAcceptor为什么通过异步任务添加到pipeline中呢?
原因是,NioServerSocketChannel在初始化的时候,还没有开始将该Channel注册到Selector对象上,也就是没办法把ACCEPT事件注册到Selector上,所以事先添加了ChannelInitializer处理器,等待Channel注册完成后,再向Pipeline中添加ServerBootstrapAcceptor。
ServerBootstrapAcceptor
按照下面的方法演示一下SocketChannel中的Pipeline的构建过程
启动服务端监听在ServerBootstrapAcceptor的channelRead方法中打上断点通过telnet 连接,此时会触发debug。public void channelRead(ChannelHandlerContext ctx, Object msg) { final Channel child = (Channel) msg; child.pipeline().addLast(childHandler); //在这里,将handler添加到SocketChannel的pipeline中 setChannelOptions(child, childOptions, logger); setAttributes(child, childAttrs); try { //把当前客户端的链接SocketChannel注册到某个EventLoop中。 childGroup.register(child).addListener(new ChannelFutureListener() { @Override public void operationComplete(ChannelFuture future) throws Exception { if (!future.isSuccess()) { forceClose(child, future.cause()); } } }); } catch (Throwable t) { forceClose(child, t); } }ServerBootstrapAcceptor是服务端NioServerSocketChannel中的一个特殊处理器,该处理器的channelRead事件只会在新连接产生时触发,所以这里通过final Channel child = (Channel) msg;可以直接拿到客户端的链接SocketChannel。
ServerBootstrapAcceptor接着通过childGroup.register()方法,把当前NioSocketChannel注册到工作线程中。
事件触发机制的流程
在ServerBootstrapAcceptor中,收到客户端连接时,会调用childGroup.register(child)把当前客户端连接注册到指定NioEventLoop的Selector中。
这个注册流程和前面讲解的NioServerSocketChannel注册流程完全一样,最终都会进入到AbstractChannel.register0方法。
AbstractChannel.register0
private void register0(ChannelPromise promise) { try { // check if the channel is still open as it could be closed in the mean time when the register // call was outside of the eventLoop if (!promise.setUncancellable() || !ensureOpen(promise)) { return; } boolean firstRegistration = neverRegistered; doRegister(); neverRegistered = false; registered = true; // Ensure we call handlerAdded(…) before we actually notify the promise. This is needed as the // user may already fire events through the pipeline in the ChannelFutureListener. pipeline.invokeHandlerAddedIfNeeded(); safeSetSuccess(promise); pipeline.fireChannelRegistered(); //执行pipeline中的ChannelRegistered()事件。 // Only fire a channelActive if the channel has never been registered. This prevents firing // multiple channel actives if the channel is deregistered and re-registered. if (isActive()) { if (firstRegistration) { pipeline.fireChannelActive(); } else if (config().isAutoRead()) { // This channel was registered before and autoRead() is set. This means we need to begin read // again so that we process inbound data. // // See https://github.com/netty/netty/issues/4805 beginRead(); } } } catch (Throwable t) { // Close the channel directly to avoid FD leak. closeForcibly(); closeFuture.setClosed(); safeSetFailure(promise, t); } }pipeline.fireChannelRegistered()
@Override public final ChannelPipeline fireChannelRegistered() { AbstractChannelHandlerContext.invokeChannelRegistered(head); return this; }下面的事件触发,分为两个逻辑
如果当前的任务是在eventLoop中触发的,则直接调用invokeChannelRegistered否则,异步执行invokeChannelRegistered。static void invokeChannelRegistered(final AbstractChannelHandlerContext next) { EventExecutor executor = next.executor(); if (executor.inEventLoop()) { next.invokeChannelRegistered(); } else { executor.execute(new Runnable() { @Override public void run() { next.invokeChannelRegistered(); } }); } }invokeChannelRegistered
触发下一个handler的channelRegistered方法。
private void invokeChannelRegistered() { if (invokeHandler()) { try { ((ChannelInboundHandler) handler()).channelRegistered(this); } catch (Throwable t) { invokeExceptionCaught(t); } } else { fireChannelRegistered(); } }Netty服务端启动总结
到此为止,整个服务端启动的过程,我们就已经分析完成了,主要的逻辑如下
创建服务端Channel,本质上是根据用户配置的实现,调用JDK原生的Channel初始化Channel的核心属性,unsafe、pipeline初始化Channel的Pipeline,主要是添加两个特殊的处理器,ChannelInitializer和ServerBootstrapAcceptor注册服务端的Channel,添加OP_ACCEPT事件,这里底层调用的是JDK层面的实现,讲Channel注册到BossEventLoop中的Selector上绑定端口,调用JDK层面的API,绑定端口。